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COVID-19 Pandemic: Global Health Challenge

Figure. Incident COVID-19 Cases per 1M (7-day average) from
March, 2020 to March 7, 20213

3COVID Tracking Project.
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States-level Responses

States have implemented series of non-pharmaceutical
interventions (NPIs) to mitigate COVID-19
I Lockdown: physical distance closures of

schools/businesses/gyms/restaurants/bars/theaters, ban
visitors to long term care facility

I Stay-at-home orders
I Mask mandates
I Re-opening business, restaurants, bars

https://msph.shinyapps.io/dscovr_dashboard/
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How to Estimate the Effects of NPIs?

I Process-based infectious disease models to simulate
counterfactual outcomes under interventions (Ferguson et
al. 2020)

I Usual regression models to study association between
NPIs and outcome (e.g., mask wearing and I(Rt < 1);
Radar et al. 2021)

Shanghong Xie, School of Statistics, SWUFE

https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
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How to Estimate the Effects of NPIs?

Quasi-experiments longitudinal pre-post intervention design.
Often used to study health policies when randomized trials are
not feasible.

Staggered adoption of lockdown (physical distance closures)
across states:

Days since the first reported case
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Evaluation of NPI Effect

Causal inference methods for studies with longitudinal (panel)
data and staggered adoptions of treatments:
I Difference in difference (DID) regression, or interrupted

time series analysis (Wing et al. 2018; DID Estimator)
I Synthetic controls (Abadie et al. 2010): create weights to

match pre-treatment period of control units.
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https://www.annualreviews.org/doi/pdf/10.1146/annurev-publhealth-040617-013507
https://www.publichealth.columbia.edu/research/population-health-methods/difference-difference-estimation


DID Regression

Assumptions:

I Parallel trends in groups; regression with time effect and unit
effect, test time×group interaction

I Outcomes do not influence treatment allocation

I Stable unit treatment value assumption (SUTVA)
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Synthetic Controls

California’s Tobacco Control Program (Abadie et al. 20104):

I Designed for a single treated unit.

I The weights may not be adequate for the average effect.

4Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for
comparative case studies: Estimating the effect of California’s tobacco control program.
JASA, 105(490), 493-505.
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Proposed Method
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Considerations in the Estimation of NPIs

I Choice of the outcome measure for COVID-19
transmission
I Observed cases are subject to high variations/noises
I Underlying mechanism of disease transmission can be

summarized by the effective reproduction number Rt
I More meaningful time scale is to match by disease stage:

shift calendar time to time since first reported case

I Goal: use quasi-experiment framework to account for
confounding and estimate average treatment effect (ATE)
and heterogeneity of treatment effect (HTE)

Shanghong Xie, School of Statistics, SWUFE



Estimation of Rt

I Modeling population-level transmission using summary statistics
(daily incidence cases in 50 states), not at individual-level

I SARS-CoV-2: long incubation period, highly infectious in the
pre-symptomatic phase (50% transmission during this phase CDC)

I Time-varying transmission rate as societal behavior changes and NPIs
are implemented

I Intervention effect may be time-dependent

Combine mechanistic-based model with statistical model and provide
important parameter effective reproduction number Rt.

Shanghong Xie, School of Statistics, SWUFE
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I N(t): number of new infections on date t.

I a(t): effective transmission rate

N(t + 1) = a(t)
∞∑

k=0

N(t− k)S(k + 1). (1)

Equation (1) gives a convolution update for the number of new
infections given the past infections N(t),N(t− 1), . . . ,N(t0).

I S(k): discrete survival function, proportion of persons remaining
infectious after k days of being infected

Shanghong Xie, School of Statistics, SWUFE



Time-varying Effective Rt as Outcomes

I Model a(t) as non-negative, piece-wise linear functions
with knots at NPI event times and equally spaced in
between.

I Model daily confirmed cases accounting for additive errors
(optimization under a squared loss).

I Effective reproduction number (Rt): the average number of
secondary cases infected by primary cases who are
infectious at time t (Cori et al. 2013)

Rt =
N(t)∑C

k=1 N(t− k)w(k)

w(k) probability mass function of the serial interval
distribution.

I Rt captures the temporal changes in the disease spread.
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Our Forecasts of COVID-19 Pandemic

We submit our forecasts to COVID Forecast Hub, which is used by the US
Centers for Disease Control and Prevention (CDC)5

Using data up to 2020-10-17, 4 weeks ahead forecasts of incident weekly deaths till
2020-11-14

5: COVID-19 Forecast Hub Consortium (2022). PNAS 119 (15),
e2113561119
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https://covid19forecasthub.org
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Performance of Our Forecasts

Using data up to 2020-10-17,

Forecast Evaluation from Steve McConnell
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Performance of Our Forecasts

Forecast Evaluation from Steve McConnell
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Causal Estimand: ATE

Y(1)
i (t + ∆; t): potential outcome (change of Rt between t and

(t + ∆)) when intervention of interest is applied at t and no
other interventions in (t, t + ∆).

Y(0)
i (t + ∆; t): potential outcome when no intervention is

applied at time t, and no other interventions in (t, t + ∆).

Intervention effect ∆ days after t:

γ(∆, t) = E[Y(1)
i (t + ∆; t)− Y(0)

i (t + ∆; t)].

The ATE is defined as:

γ(∆) ≡
∫
γ(∆, t)dFT(t),

where FT(·) is the distribution of the intervention times Ti.

Shanghong Xie, School of Statistics, SWUFE



Assumptions for Estimating ATE from Observed Data

Assumptions:

(a) Suppose no other intervention occurs between t and t + ∆.
When Ti = t (i.e., there is an intervention at t),
Y(1)

i (t + ∆; t) = Yi(t + ∆; t).

(b) Suppose no other intervention occurs between t and t + ∆
and the intervention of interest has not been imposed before t,
Y(0)

i (t + ∆; t) = Yi(t + ∆; t).

(c) Assume no unobserved confounders: conditional on Ti ≥ t,
Ti = t is independent of Y(a)

i (t + ∆; t), a = 0, 1 given Xi and
Hi(t), where Hi(t):observed epidemic history by time t.

(a), (b): SUTVA, implies no delayed effect

Shanghong Xie, School of Statistics, SWUFE



Nested Case-Control Design

Create “case” and “control” states under a nested case-control
design to compute propensity scores.
I Align each state’s data according to the time since first

reported case so states are more similar in stage of the
epidemic.

I For each state with an intervention, create “control states”
as those without an intervention by t (“at risk”) and no
interventions in (t, t + ∆).

Shanghong Xie, School of Statistics, SWUFE



Covariates for Propensity Scores

Xi: state-level demographics (e.g., age, race, ethnicity
distribution) and social vulnerability index (SVI) variables
(available from the CDC).

Shanghong Xie, School of Statistics, SWUFE



Covariates for Propensity Scores

What data were used for policy decision making?

Hi(t): previous week’s Rt, new cases, new deaths, testing
positivity rate, hopitalizations

Shanghong Xie, School of Statistics, SWUFE



Estimation Methods

Observe that under SUTVA and NUC assumptions (a), (b), (c)

γ(∆, t) = E
[

I(Ti = t)
P(Ti = t|Ti ≥ t,Hi(t),Xi)

{
Y(1)

i (t + ∆; t)
}]

− E
[

I(Ti > t + ∆)

P(Ti > t + ∆|Ti ≥ t,Hi(t),Xi)

{
Y(0)

i (t + ∆; t)
}]

= E
[

I(Ti = t)
P(Ti = t|Ti ≥ t,Hi(t),Xi)

{Yi(t + ∆; t)}
]

− E
[

I(Ti > t + ∆)

P(Ti > t + ∆|Ti ≥ t,Hi(t),Xi)
{Yi(t + ∆; t)}

]
,

and the ATE is
γ(∆) ≡

∫
γ(∆, t)dFT(t).
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Estimation Methods

Propensity score model:

logit {P(Ti = t|Ti ≥ t,Hi(t),Xi)} = (Hi(t),Xi)
Tβ

to obtain p̂i(t) = exp{(Hi(t),Xi)
Tβ̂}

1+exp{(Hi(t),Xi)Tβ̂}
. Let q̂ij = p̂i(tj).

The ATE is estimated as:

γ̂(∆) =

∑n
i=1
∑

j∈S(i) dijδij/q̂ij∑n
i=1
∑

j∈S(i) δij/q̂ij
−
∑n

i=1
∑

j∈S(i) dij(1− δij)/(1− q̂ij)∑n
i=1
∑

j∈S(i)(1− δij)/(1− q̂ij)
,

dij: change in reproduction number, δij: intervention status at
time j for state i, S(i) set of eligible control states for state i.

Shanghong Xie, School of Statistics, SWUFE



Inference

Theorem 1. Suppose that the propensity score model holds.
Under assumptions (a)-(c) and assuming that (Hi(t),X) is
linearly independent with positive probability for some t in T
and that H(t) has a bounded total variation in T ,√

n(γ̂(∆)− γ(∆)) converges to a mean-zero normal
distribution.

Variance can be estimated explicitly by a sandwich estimator.

Shanghong Xie, School of Statistics, SWUFE



HTE by Regression Model

With hypothesized moderators Zi, postulate model for the
conditional average treatment effects (CATE)

E[Y(1)
i (t + ∆; t)− Y(0)

i (t + ∆; t)|Zi] = θTZi.

The estimator for θ can be obtained by solving

n∑
i=1

Zi

∑
j∈S(i)

{
dij

{
δij

q̂ij
−

1− δij

1− q̂ij

}
− θTZi

} = 0.

Inference: asymptotic distribution for θ̂ and variance can be
derived.

Shanghong Xie, School of Statistics, SWUFE



Analysis and Results
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Interventions of Interest

Timeline of NPIs: lockdown; mask mandate; reopening business6.
(Implemented March 13, 2020–August 5, 2020)

Days since the first reported case
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Data: JHU Center for System Science and Engineering (CSSE)
https://github.com/CSSEGISandData/COVID-19

Fig. Observed (red curve) and fitted (black curve) daily COVID-19
cases from February, 2020 to March, 2021
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Fig. Estimated Rt in All States
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Fig. Difference in Rt 7-days post-intervention and 1 day before
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Results on Propensity Scores

22 candidate predictors (pre-intervention new cases, new deaths, Rt,
demographics, SVI) for propensity scores. Screened top 10 using
marginal correlation.

Table. Propensity Score Model for Initiating Interventions

Intervention Significant Predictors

Lockdown Rt, new cases, new deaths, Latino population size,
Institutionalized population size

Mask mandate Rt, new cases, new deaths,
Reopen business Rt, new deaths, mobile home

Sensitivity analysis
Stay-at-home order new cases, new deaths, no high school diploma
Reopen restaurants Rt
Reopen bars new cases

Shanghong Xie, School of Statistics, SWUFE



Figure: Average intervention effects (ATEs) with 95% confidence intervals.
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Closures and Mobility7

7Google mobility report.
Shanghong Xie, School of Statistics, SWUFE



Mask Use

Figure. Self-reported Mask Use (Data Source: IHME,
University of Washington)

Mask mandate may not fully correspond to mask use behavior
in public (Rader et al., 2021).
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Figure: Sensitivity analysis of ATEs with 95% confidence intervals.
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Estimated HTE

Candidate moderators: age, race, gender, and the poverty level
Lockdown effect is universal (no moderator). Race with some
suggestive evidence of moderating reopening bars (marginally
significant):
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Discussion
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Summary

Propose a method to evaluate ATE and HTE of mitigation
strategies for COVID-19.
I Difference in Rt as measure of intervention effect
I Construct propensity scores under a nested case-control

design and use a weighted DID estimator

Limitations and extensions:
I Lack of data on behavioral change and policy enforcement
I Examine other interventions (i.e., vaccine) and use

county-level data to study HTE and precision public health
intervention (e.g., speed/equity of vaccine administration)

Shanghong Xie, School of Statistics, SWUFE



Summary

I More granular assessments of interventions and evaluate
the joint effect or interactions of interventions with
county-level data.

I Did not account for delayed effect of prior interventions.
May consider dynamic treatment regimens to optimize
sequence of interventions.

Shanghong Xie, School of Statistics, SWUFE
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