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Background: Brain Networks
Network analysis: investigate the interrelationships between
elements (e.g., brain regions, symptoms, genes) as a system. Nodes:
brain regions; Edges: relations between regions

Bassett & Bullmore (2010) Curr Op Neurol

Shanghong Xie Department of Statistics, University of South Carolina 1 of 31



Background: Brain Effective Connectivity

Based on functional data (fMRI, EEG, MEG): time series recorded at
various brain regions in a group of individuals

▶ Brain functional connectivity

• Associations between time series of regions, does not infer
directed temporal nature of relations between regions

▶ Brain effective connectivity

• Directed temporal relations between brain regions based on
time-series data (Bullmore and Bassett, 2011)
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Existing Network Analysis Approaches

For time series data:

▶ Granger causality analysis X(t) =
∑

k AkX(t − k) + ε(t): build
on the vector autoregression (VAR) framework with Gaussian
noise ε(t) (Granger, 1969; Bressler et al. 2011)

▶ Dynamic causal modeling (DCM):

Ẋ(t) = AX(t) + Cu(t), Y(t) = f (X(t)) + ε(t)

state-space model, using latent state variables to describe the
complex system by first-order ODE (Friston et al., 2003, 2011).

Assume Gaussian distribution for noises, do not accommodate the
contemporaneous relations (i.e., associations between elements
measured at the same time).
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Challenges
In brain functional data
▶ Neuronal signal contaminated by artifacts and structured noises

(Konrad and Eickhoff, 2010)
• e.g physiological noise, motion-related artifacts, eye

movement artifacts, or scanner-induced noise
▶ Recorded signals may have non-Gaussian properties (Wink and

Roerdink, 2006)
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(a) Case
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(b) Control

Figure: Kernel density of two brain regions at different time
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Existing Network Analysis Approaches

Methods addressing non-Gaussian components:

▶ Linear Non-Gaussian Acyclic Model (LiNGAM; X = BX + e):
estimate directed acyclic graph (DAG) B, in the presence of
non-Gaussian noise e (Shimizu et al., 2006)

▶ VARLiNGAM (X(t) =
∑

k BkX(t − k) + e(t)): extension to
LiNGAM (Hyvärinen et al., 2010)

▶ Structural Independent Component Analysis (ICA) removal:
requires expert knowledge and judgments (Griffanti et al., 2014)

Challenges:

▶ Directly model the temporal relations at the level of observed
measurements, but neuronal signals are often not directly
observed by non-invasive imaging techniques.

▶ VARLiNGAM designed for a single subject’s data.
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Our Contributions

Using data collected from a group of subjects to identify the temporal
relationships between Gaussian components

▶ Decompose observed measurements

• Latent Gaussian process: temporal relations between
elements of interest

• Non-Gaussian components: e.g., artifacts, structured
noise, other unobserved non-intervenable factors

▶ ICA to address structured noise

▶ Moment estimations to obtain the temporal and
contemporaneous networks

• No distributional assumptions on non-Gaussian
components
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Methods
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Model

▶ Y i(t) = (Yi1(t), ...,YiK(t))′: observed biomarkers (e.g., BOLD
signals) measured at time t:

Y i(t) = Ui(t) + Gi(t) + ϵi(t)

▶ Ui(t) = w(t)Si: latent non-Gaussian processes

• Si = (Si1, . . . ,SiM)′: latent non-Gaussian sources, mutually
independent with E(Si) = 0, E(SiS′

i) = IM×M
• Static brain activity, artifacts, and structured noise

▶ Gi(t) ∼ N(0,Σt): independent latent Gaussian processes that
represent the signals of interest

▶ ϵi(t) ∼ N(0, 1
TΩ): residual errors that represent

contemporaneous information
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Model

For the Gaussian processes of interest: Gi(t + 1) = AGi(t)

▶ A = (akj): temporal network. akj: how jth component of Gi(t) at
time t influences kth component at time t + 1.

▶ Γ = Ω−1 = (γkj): contemporaneous network. γkj: association
between ϵik(t) and ϵij(t) conditioning on other ϵil(t)
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Model

Our goal is to infer two networks

▶ Temporal network A

• Temporal pathways among Gaussian components of
interest (i.e., Gi(t))

• In dynamic causal model (DCM), A is often used to infer
temporal effects and effective connectivities

▶ Cross-sectional contemporaneous network Γ

• Undirected network obtained after accounting for the
temporal effects.
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Estimation

▶ Model

Y i(t) = Ui(t) + Gi(t) + ϵi(t), Gi(t + 1) = AGi(t)

▶ Gi(t + 1) = AGi(t) implies Gi(t) = AtGi(0), require |λ(A)| < 1,
where λ(A) denotes the eigenvalues of A

• When t is small, At is large and contains significant
variability.

• When t is large, At is small, and the variability is primarily
in the residuals ϵi(t).

Thus, accurate estimation of A requires the first few time points,
while accurate estimation of Γ requires later time points.
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Estimation

The parameters of components can be estimated in two steps

▶ Estimate the non-Gaussian process Ui(t) = w(t)Si which
involves the independent sources Si and weight matrix w(t)

▶ After removing Ui(t) from Y i(t), estimate the temporal network
A and the contemporaneous network Γ through moment
estimations
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Estimation: non-Gaussian Components

Latent non-Gaussian process

Ui(t) = w(t)Si.

▶ Contributions of Gaussian processes Gi(t) and ϵi(t) become
negligible with large T; only non-Gaussian components remain.

▶ Perform ICA on Y iT = T−1 ∑T−1
t=0

(
Ỹij(t)

)K

j=1

Ŝi = Ĉ
−1

Y iT, Ĉ
−1

Ĉ = IM×M.

• FastICA (Hyvarinen, 1999)
• Number of ICs determined by minimum description length

(MDL) criteria

▶ Given Ŝi, least squares to obtain wj(t):
∑n

i=1(Yij(t)− ST
i wj(t))2
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Estimation: Temporal Network A
Let Ri(t) = Y i(t)− Ui(t). Note:

Ri(t) = AtGi(0) + ϵi(t)

Θ = Cov(Gi(0)),Ψt,s = Cov(Ri(t),Ri(s)).

▶ For any pair of time (t, s), s ̸= t, Ψt,s = AtΘ(As)′

▶ For any three time points (t, s, l),

Ψt,s(Ψl,s)
−1 = AtΘ(As)′(As)

′−1Θ−1A−l = At−l.

Thus, A = Ψt+2,t(Ψt+1,t)
−1 for any t = 0, . . . ,T − 3.

▶ To stabilize estimation, use a fixed number of time points Ta,

Â =
( 1

Ta

Ta−1∑
t=0

Ψ̂t+2,t

)( 1
Ta

Ta−1∑
t=0

Ψ̂t+1,t

)−1
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Estimation: Contemporaneous Network Γ

For Ω, consider covariance at the same time point:

Ψt,t = Cov(Ri(t),Ri(t)) = Σt +
1
T
Ω,

Ψt+1,t+1 = Cov(Ri(t + 1),Ri(t + 1)) = AΣtA′ +
1
T
Ω.

Using the vectorization operator,

vec(Ω) = (A ⊗ A − I)−1 vec(TQt),

where Qt = AΨt,tA′ −Ψt+1,t+1.

▶ Σt = AtΘ(A′)t becomes small when t is large enough (i.e., on the
scale of T1/2), use the time points t ≥ Tc to estimate Ω.

▶ Contemporaneous network Γ is estimated as Γ̂ = Ω̂
−1

.
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Identifiability

Lemma 1
Suppose that model (1) holds for another set of latent variables S̃i, G̃i(t), ϵ̃i(t) but
with different parameters w(t),A,Ω,Γ, and the distribution of S̃i, fs. Under
technical conditions, w(t) = w0(t), A = A0, Ω = Ω0, Γ = Γ0, and fs = f0.
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Asymptotic Properties

Theorem 1
Under technical conditions and Ta is a fixed number of time points,√

n{vec(Â)− vec(A0)} converges in distribution to a mean-zero normal
distribution.

Theorem 2
Under technical conditions and Tc = O(

√
T),

√
n{vec(Γ̂)− vec(Γ0)} converges in

distribution to a mean-zero normal distribution.

Require earlier time points in a time-series (i.e., t < Ta) to estimate A
and later time points (i.e., t ≥ Tc) to estimate Γ.

Asymptotic covariances of Â and Γ̂ are of complex form, use
bootstraps to estimate the asymptotic covariance matrix in the
simulation studies.
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Simulation Studies
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Simulation Settings

▶ Number of nodes K = 5, 10, 20, n = 100, T = 200, 400, 1000, 2000

▶ Scenario 1: generate data from our model (1)

• Temporal network A: ajj = 0.8, non-null ajk = 0.2

▶ Scenario 2: generate data from a dynamic system based on a
stochastic differential equation

Ġi = BGi + diag(0.1, . . . , 0.1)ϵ̇i, Y i(t) = Ui(t) + Gi(t),

▶ Si: three independent Unif (1, 3)

▶ w11(t) = w11(0) + 5t/T, w22(t) = w22(0) + 5(t/T)2,
w33(t) = w33(0) + 5 sin(2t/T), w43(t) = w43(0) + 5 cos(3t/T), and
wjm(t) = wjm(0) for all the remaining elements, where
wjm(0) ∼ N(5, 1)

Compared to: no IC approach, LiNGAM, VARLiNGAM

Shanghong Xie Department of Statistics, University of South Carolina 19 of 31



Simulation Results

Table: Simulation performance of estimated A and Γ in Scenario 1.

Number of Number 95% Coverage 95% Coverage
Time Points of Nodes Network Method MSE AUC probability length
T = 200 K = 5 A Our method 0.01 0.989 0.92 0.071

No IC 0.148 0.523 − −
Γ Our method < 0.001 1 0.92 0.003

No IC 0.168 0.499 − −
K = 10 A Our method 0.019 0.994 0.95 0.05

No IC 0.134 0.894 − −
Γ Our method 0.002 1 0.94 0.008

No IC 1.601 0.326 − −
K = 20 A Our method 0.071 0.999 0.96 0.054

No IC 0.318 0.827 − −
Γ Our method 0.081 0.956 0.98 0.164

No IC 9.361 0.567 − −
MSE: mean squared error; − indicates the average 95% coverage probability

and coverage length over 100 simulations for no IC approach were not
applicable.
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Simulation Results

Table: Simulation performance of estimated A by LiNGAM and
VARLiNGAM in Scenario 1.

Number of Number
Time Points of Nodes Method MSE AUC
T = 200 K = 5 LiNGAM 22.998 0.657

VARLiNGAM 1.728 0.509
K = 10 LiNGAM 63.955 0.576

VARLiNGAM 5.676 0.661
K = 20 LiNGAM 37.483 0.444

VARLiNGAM 16.127 0.512

MSE: mean squared error.
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Simulation Results

Table: Simulation performance of estimated A and B in Scenario 2.

Number of Number
Time Points of Nodes Method MSE of A MSE of B AUC of A AUC of B
T = 200 K = 5 Our method 0.069 0.113 0.952 0.964

No IC 0.307 0.435 0.574 0.494
LiNGAM 24.152 − 0.682 −
VARLiNGAM 0.338 0.469 0.791 0.633

K = 10 Our method 0.308 0.526 0.804 0.943
No IC 0.535 0.797 0.686 0.779
LiNGAM 61.707 − 0.613 −
VARLiNGAM 0.400 0.546 0.811 0.957

K = 20 Our method 1.154 2.151 0.813 0.975
No IC 1.300 2.190 0.815 0.920
LiNGAM 49.849 − 0.609 −
VARLiNGAM 0.717 1.027 0.784 0.963

MSE: mean squared error; − indicates that LiNGAM was not able to estimate
B.
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Real Data Application
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Real Data Application: ADHD-200 Consortium Data

ADHD-200 consortium at NYU Child Study Center: 88 healthy
controls, 117 ADHD individuals.

Resting-state fMRI data: time courses of regions of interest (ROIs),
172 time points. Extract 20 commonly studied ROIs:

▶ default mode network: bilateral middle frontal gyrus (MFG),
posterior cingulate cortex (PCC), medial superior frontal gyrus
(SFGmed), and precuneus regions.

▶ cognitive control network: bilateral angular, insula, dorsolateral
superior frontal gyrus (SFGdor), anterior cingulate cortex
(ACC), precentral, and inferior parietal (IPL) regions

Our goal: use the temporal dynamics in fMRI signals to analyze
temporal relations (i.e., effective connectivity)
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Real Data Results
Temporal network Contemporaneous network Functional connectivity

(a) Cases

(b) Controls
Yellow: default mode network; Green: cognitive control network. Blue: positive edge; Red edge: negative edge.
Edge width is proportional to the edge strength. Top 30 (or 60) edges based on FDR adjusted p-values.
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Real Data Results

▶ Edges identified by the functional connectivity study were
mostly contemporaneous edges instead of temporal edges

▶ Temporal networks:

• Reduced effective connectivity within default mode
network (DMN), especially between precuneus and other
DMN regions, including MFG and PCC.

• Increased connectivity within cognitive control (CC)
network

• Decreased connectivity between DMN and CC network

▶ Consistent with a meta-analysis of 20 studies (Sutcubasi et
al. 2020)

▶ Support the hypothesis that one potential mechanism of ADHD
is disconnection between regions within the default mode
network (Konrad and Eickhoff, 2010; Castellanos et al., 2008;
Uddin et al., 2008)
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Real Data Results
Figure: Heatmaps of spatial correlations from U(t) of the case versus
the control group.

Case Control
SFG

m
ed

.R
SFG

do
r.L

Ang
ul

ar
.L

M
FG

.L
SFG

do
r.R

SFG
m

ed
.L

ACC.R

Pre
ce

nt
ra

l.L
M

FG
.R

Pre
ce

nt
ra

l.R
IP

L.
R

IP
L.

L

Pre
cu

ne
us

.L
Ang

ul
ar

.R

Pre
cu

ne
us

.R
In

su
la

.L
In

su
la

.R
ACC.L
PPC.R
PPC.L

SFGmed.R
SFGdor.L
Angular.L
MFG.L
SFGdor.R
SFGmed.L
ACC.R
Precentral.L
MFG.R
Precentral.R
IPL.R
IPL.L
Precuneus.L
Angular.R
Precuneus.R
Insula.L
Insula.R
ACC.L
PPC.R
PPC.L

−0.15 0 0.1

Value

Color Key

In
su

la
.L

Ang
ul

ar
.L

Ang
ul

ar
.R

PPC.R
PPC.L

In
su

la
.R

SFG
do

r.R
ACC.L
ACC.R

SFG
m

ed
.R

SFG
do

r.L

SFG
m

ed
.L

IP
L.

L

Pre
cu

ne
us

.L

Pre
cu

ne
us

.R
M

FG
.R

M
FG

.L
IP

L.
R

Pre
ce

nt
ra

l.L

Pre
ce

nt
ra

l.R

Insula.L
Angular.L
Angular.R
PPC.R
PPC.L
Insula.R
SFGdor.R
ACC.L
ACC.R
SFGmed.R
SFGdor.L
SFGmed.L
IPL.L
Precuneus.L
Precuneus.R
MFG.R
MFG.L
IPL.R
Precentral.L
Precentral.R

−0.04 0 0.04

Value

Color Key

Non-Gaussian effects were spatially clustered. Same regions in the left and
right hemispheres tend to form a cluster.

Case group: insula, ACC (CC network); Control: MFG, precentral, insula (CC
and DMN)
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Comparison with Alternative Methods
▶ LiNGAM: does not differentiate temporal/contemporaneous network,

less consistent with functional connectivity network.

▶ Structural ICA denoising: failed to identify insula as the key region for
the case group.
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Discussion

▶ Discover temporal network from time-series biomarkers

▶ Decompose observed biomarker measurements (contain
multiple sources) into Gaussian+non-Gaussian components

▶ Separate temporal network from contemporaneous network

▶ Not accounting for non-Gaussian components may bias the
temporal network between Gaussian signals

▶ Designed for a group of subjects to characterize the group-level
networks
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Discussion

Extensions

▶ AR(1) can be extended to higher orders

▶ A is time-invariant, but may depend on time

▶ Assume A is homogeneous across a group of similar subjects. In
a heterogeneous population, model A as subject-specific

▶ Extension to other data modalities, high-dimensional
applications

Reference: Xie et al. (2024). Identifying Temporal Pathways Using
Biomarkers in the Presence of Latent Non-Gaussian Components.
Biometrics 80 (2), ujae033.

R package: https://github.com/shanghongxie/ICATemporalNetwork
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Collaborators

▶ Donglin Zeng, Department of Biostatistics, University of
Michigan

▶ Yuanjia Wang, Department of Biostatistics, Columbia
University

THANK YOU !
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